If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x=90
We move all terms to the left:
2x^2+6x-(90)=0
a = 2; b = 6; c = -90;
Δ = b2-4ac
Δ = 62-4·2·(-90)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{21}}{2*2}=\frac{-6-6\sqrt{21}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{21}}{2*2}=\frac{-6+6\sqrt{21}}{4} $
| -25=y/3-4 | | (X+13)(x-0)=0 | | 12x+(-20)=30+2x | | 10b+-45=43 | | 5x+x=3x+60 | | H=-490t^2+1260t | | 2.33x=224 | | X+7-(4x+1)=-10 | | 2x*7.1=96.04 | | 2f+1=3f-26 | | 9c+2,65=36,85-9c | | -11+7n=24+2n | | 5c=3-2c-4= | | 2f+3f+1=26 | | 8a+12=30+14a | | j+4=5 | | h^2+1=17 | | 11x-6=17x+3 | | -4g-8=4 | | 4f-3=-3 | | 20z-5z-12z=10z+8 | | -6+12x=126 | | F(×)=-3x^2+4x+5 | | v/9+2=7 | | 3v+32=7v | | 46x=41x+2 | | (7x-5)=70 | | 22-q=24 | | s=-6s-4.5s=-16.5 | | -6s-4.5s=-16.53 | | x-4/5=15/10 | | -2.4(5x-10)=3/7(14x-7) |